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Abstract Some aspects of vanishing viscosity (ε → 0+) approximations of discontinues solutions of odd-
order nonlinear PDEs are discussed. The first problem concerns entropy solutions of the classic first-order
conservation law (Euler’s equation)

ut + uux = 0 (or ut + u2ux = 0), (0.1)

which are approximated by solutions uε(x, t) of the higher-order parabolic equation

ut + uux = ε(−1)m+1D2m
x u, Dx = ∂/∂x, with integer m ≥ 2. (0.2)

Unlike the classic case m = 1 (Burgers’ equation), which is the cornerstone of modern theory of entropy
solutions, direct higher-order approximations of many known entropy conditions and inequalities are not
possible. By use of the concept of proper solutions from extended semigroup theory, it is shown that (0.2)
and other types of approximations via 2mth-order linear or quasilinear operators correctly describe the
solutions of two basic Riemann problems for (0.1) with initial data

S∓(x) = ∓sign x,

corresponding to the shock (S−) and rarefaction (S+) waves, respectively.
The second model is taken from nonlinear dispersion theory with the parabolic approximation

ut − (uux)xx = ε(−1)m+1D2m
x u, with m ≥ 2. (0.3)

Similar evolution properties of ε-approximations of stationary shocks S±(x) posed for (0.3) are established.
Special “integrable” quasilinear odd-order PDEs are known to admit non-smooth compacton or peakon-
type solutions (e.g., the Rosenau–Hyman and FFCM equations), while for more general non-integrable
PDEs such results are unknown. It is shown that the shock S−(x) for (0.3) is obtained as ε → 0 by an ODE
approximation and also via blow-up self-similar solutions focusing as t → T−. For S+(x), the correspond-
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ing smooth rarefaction similarity solution is indicated that explains the collapse of this non-entropy shock
wave. A survey on entropy–viscosity methods developed in the last fifty years is included.

Keywords Conservation laws · Entropy solutions · Higher-order parabolic operators · Vanishing
viscosity

1 Introduction: Euler’s equation and others

1.1 Odd-order quasilinear PDEs are special in general theory and applications

Odd-order partial differential equations (PDEs) have always played a special role in general theory and in
applications. Originating from fluid and gas dynamics (e.g., Euler’s equations from the 18th century), these
equations deeply penetrated into many crucial applications and created several famous and sometimes
isolated mathematical areas of PDE theory.

It is key that such nonlinear PDEs are able to describe singularity phenomena that are not available
in other classes of even-order (say, reaction–diffusion type) equations or in quasilinear wave equations.
Actually, the singularity effects, such as the appearance and propagation of shock waves and other strong
or weak discontinuities, are the main features that these PDEs were oriented to describe and to be good at.

Mathematically speaking, such shocks and other singularities were the origin of many fundamental the-
oretical difficulties. Unlike many classes of even-order elliptic, parabolic, and hyperbolic PDEs, odd-order
equations do not contain a mechanism of smoothing of solutions, which is called the interior regularity
of solutions (obviously, this would destroy shock waves). Since for complicated PDEs of such type, there
exists a variety of shocks with different local behaviour and local laws of propagation (generally called
Rankine–Hugoniot conditions), the correct choice of good “entropy” solutions, which makes the problem
well-posed, becomes a principal difficult question.

In the 20th century, the necessity of entropy definitions of correct solutions has been recognized since
the 1940s, and first results were due to Burgers and Hopf, who were the first to develop the “viscosity”
approximation approach to Euler’s equation (a scalar conservation law). The idea of the viscosity approxi-
mation consists in adding to the main odd-order operator a higher-order diffusion-like term with vanishing
viscosity parameter ε > 0. This moves the PDE into the better class of even-order equations that makes
possible to construct a unique approximate solution. The main mathematical difficulty then appears in the
singular limit ε → 0, which leads to a number of difficult mathematical problems.

The main ideas of viscosity and entropy theory of scalar first-order 1D conservation laws are associated
with such names as Oleinik, Lax, Gel’fand, Glimm, Kruzhkov, and others, who developed a complete
existence and uniqueness theory for such first-order PDEs in the 1950s and 60s. This research initiated a
large amount of further study and further discoveries in the theory of conservation laws and hyperbolic
systems that are reflected in a number of monographs to be cited later.

It must be noted that the main crucial results have been obtained by using a classical diffusion viscosity
approximation via the Laplace operator. Mathematically, this gives many advantages for the analysis, since
the Laplacian, as mathematicians say, has the sign, i.e., it is a negative operator in natural topology, and
preserves this sign in many related nonlinear mathematical manipulations. This is a crucial and an excep-
tional property of the Laplacian that make it so popular and widely used in PDE theory. In other words,
the resulting ε-regularized equations obey the Maximum Principle (MP), which is a key ingredient of the
modern theory of parabolic equations. Actually, it is not an exaggeration to say that precisely these special
properties of regularization via the Laplacian made it possible to create such a mathematically perfect
viscosity–entropy theory of conservation laws.

For higher-odd-order PDEs, a natural viscosity approximation leads to higher-order regularized prob-
lems without such good features, since any iteration of the Laplacian (higher-order diffusion) loses its
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“global” negativity, to say nothing about the MP. This implies several, less pleasant, conclusions implying
that many previous approaches and results achieved for first- and lower-order equations and systems fail in
principle. Moreover, fundamentally new mathematical ideas and methodologies are necessary to overcome
such difficulties.

Using a mixture of analytical, formal, and numerical methods, we will explain the main difficulties of
the analysis of such odd-order PDEs. We also present a number of rather positive (but not general and
exhaustive, which possibly are non-existent for such PDEs) conclusions from a viscosity–entropy analysis
of the solutions. We include a survey based on a detailed list of mathematical references on these subjects
for those readers who are more interested in purely mathematical issues of PDE theory.

1.2 Preliminary survey: some known models and results

Thus, we consider the questions occurring in higher-order approximations (the vanishing-viscosity method)
of nonlinear odd-order PDEs. To illustrate their rather special features, we begin with the classic scalar
conservation law or Euler’s equation

ut + uux = 0 in Q = R × R+, u(x, 0) = u0(x) in R, (1.1)

with bounded measurable initial data u0. This equation originating from gas dynamics played a key role
in the general theory of discontinuous entropy solutions of conservation laws developed in the 1950s; see
[1–3]. Among others, the well-established method to define the unique entropy solutions of the Cauchy
problem (1.1) is to consider its viscosity approximations via regular (analytic) solutions of the uniformly
parabolic Burgers equation with parameter ε > 0,

uε : ut + uux = εuxx, (1.2)

with the same data u0. The solvability of (1.2) and existence–uniqueness of uε are straightforward by
standard parabolic theory and the Maximum Principle (MP). Then the entropy solution is obtained by the
limit

u(x, t) = lim
ε→0+ uε(x, t), (1.3)

which is proved to exist. This methodology goes back to Hopf (1950); see the above monographs for the
main results and a detailed historical survey.

Our first higher-order model occurs when we approximate entropy solutions of (1.1) via higher-order
viscosity that leads to the 2mth-order extended Burgers equation (m ≥ 2 is an arbitrary integer, Dx = ∂

∂x )

uε : ut + uux = ε(−1)m+1D2m
x u, u(x, 0) = u0ε(x), (1.4)

with the positive viscosity parameter ε → 0+. On the right-hand side, we see the mth iteration of the 1D
Laplacian −D2

x = − ∂2

∂x2 > 0 (a positive operator; see below), taken with the minus sign. Overall, this gives
again a negative diffusion-like operator in (1.4). The second-order (m = 1) vanishing-viscosity method
coincides with (1.2). It turns out that passing to the limit ε → 0 in (1.4) for m ≥ 2 is incomparably more
difficult than in the classic approximation manner (1.2).

One can note that the higher-order approximation (1.4) of Euler’s equation (1.1) is not needed once
the simpler second-order one (1.2) serves extremely well, which, of course, is correct. In our analysis, the
first problem (1.4) of the higher-order approximation becomes a basic mathematical model for revealing
the main difficulties and features of such ε-regularization to be applied to other more complicated odd-
order PDEs. In addition, the problem (1.4) has other independent applications and motivations; see the
discussion below.

Beyond the entropy theory and more general aspects of extended semigroup theory, singular perturba-
tion problems such as (1.4) have other remarkable applications. For instance, higher-order viscosity terms
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occur via Grad’s method in Chapman–Enskog expansions for hydrodynamics, where the viscosity part,
being put into our hyperbolic equation, gives

ut + uux =
∞∑

n=0

ε2n+1�n(µn�u) = ε
(
µ0�u + ε2µ1�

2u + . . .
)
,

where ε > 0 is essentially the Knudsen number; see [4] for details of Rosenau’s regularization approach. In
a full model, truncating such series at n = 0 leads to the Navier–Stokes equations, while n = 1 is associated
with the Burnett equations (ill-posed since µ1 > 0, so a backward parabolic equation occurs), etc. Several
aspects of the fourth-order approximations occurring in mechanical and physical applications and, in par-
ticular, in the stability theory of finite-difference schemes (third-order methods) have attracted significant
interest and have been studied in the literature on numerical studies of so-called postshock oscillations;
see references in [5–7]. There exists a large literature in gas and aerodynamics on the influence of viscosity
and heat-conduction processes on the structure of shocks in compressed flows. This leads to complicated
higher-order nonlinear systems; see [8].

The PDE (1.4) for m = 2 (here ε = 1 by scaling)

ut + uux = −uxxxx, (1.5)

which is a version of the Kuramoto–Sivashinsky equation, is of independent interest and, in particular,
occurs as a model for a Bunsen burner, [9]. Several important results regarding existence, uniqueness, and
asymptotic stability of the non-monotone viscosity shock profile (VSP) for (1.5) have been proved since
the 1970s; see [10–17], where further references on applications can be found (the existence of the VSP is
known for any m ≥ 2; see further comments below).

Returning to the general viscosity approximation (1.4), a crucial result was obtained recently by Tadmor
[18], who showed that L2 solutions {uε}, converge in Lp, with p < ∞, to the entropy solutions, under the
assumption that they are uniformly bounded in L∞. It seems that the last assumption is also difficult to
prove without a detailed analysis of shock layers occurring as ε → 0. Tadmor’s proof uses Tartar–Murat
compensation compactness theory and interesting crucial spectral ideas.

Concerning other types of regularization of the hyperbolic equation (1.1), for third-order operators
leading, in particular, to the Korteweg–de Vries equation

ut + uux = εuxxx, (1.6)

approximations of entropy solutions with shocks are known to be impossible; see the general conclusions
of [19] concerning ODEs and a detailed PDE analysis in [20]; see also Lax’s survey [21]. In the case of a
small dispersion perturbation of Burgers’ equation

ut + uux = εuxx + δ(ε)uxxx, (1.7)

for δ(ε) = o(ε2) as ε → 0, the solutions converge to entropy ones of (1.1); see [22], [23], and more references
in [24]. Other types of quasilinear p-Laplacian approximations with the right-hand side

ε(|ux|ux)+ Aεuxxx

can lead to nonclassical shocks (not satisfying Oleinik’s entropy condition), [6,25,26].
A similar analysis has been performed for higher-order viscosity approximations

ut + uux = εuxx − δ(ε)uxxxx; (1.8)

see [27] and [28], where a more general diffusion term δD4n+2
x u was considered.

As another more recent example of a successful viscosity approximation for odd-order PDEs, we refer
to the Fuchssteiner–Fokas–Camassa–Holm equation,

ut − uxxt = −3uux + 2uxuxx + uuxxx in R × R, (1.9)
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which arises as an asymptotic model describing the wave dynamics at the free surface of fluids under
gravity. General existence–uniqueness theory of non-smooth peakon solutions, possessing a discontinuous
derivative ux, was developed with the essential use of viscosity approximations in a number of papers
including [29] (the regularization term εuxxxxt is used), [30], [31] (Kato’s semigroup approach), and [32]
(parabolic regularization of εuxx in the equivalent integral equation obtained by application of (I − D2

x)
−1

to (1.9), thus recovering an analogy of Oleinik’s entropy condition [33] to be discussed below).
In general, higher-order semilinear parabolic equations occur in several applied areas and their quali-

tative mathematical theory is the important popular subject; see the monographs [34–36]. The questions
regarding the 2mth-order approximation of odd-order evolution equations are related to difficult problems
of smooth regularization of semigroups of discontinuous solutions and the construction of discontinuous
extended semigroups occurring in the study of singularity-formation phenomena in PDEs; see [37, Ch. 6,7]
and [38, Ch. 3–5] for further references.

1.3 Other models and layout of the paper

As a first step, we intend to describe some asymptotic properties of solutions uε(x, t) of (1.4) for small
ε → 0, in order to understand why these violate all classical entropy inequalities (actually, many such
aspects are well known). In Sect. 2, we give a short survey of classical local (pointwise) and nonlocal
entropy conditions for the hyperbolic equation (1.1), as well as Gel’fand’s ODE admissibility concept (the
G-admissibility) of solutions. Indeed, it has been known for a long time that parabolic approximations with
m ≥ 2 of conservation laws are not good for using BV-spaces of functions of bounded variation due to
the oscillatory character of the kernels of fundamental solutions of 2mth-order parabolic operators. This
affects the total variation of solutions and leads to other undesirable features.

Section 3 is devoted to the well-posedness of the Cauchy problem for (1.4), which is also a non-trivial
matter for such higher-order parabolic flows. In Sect. 4 we concentrate on a detailed discussion why for
m ≥ 2 the regularized solutions {uε(x, t)} of (1.4) do not approximate for ε → 0 known local entropy
conditions for solutions u(x, t) of (1.1). This happens due to the discontinuity of total variation of uε(x, t) at
ε = 0 in approximating entropy shocks. We show that, for m ≥ 2, there exists a variation deficiency denoted
by dVm that is determined via the viscosity shock profile having finite total variation. It turns out that

the variation deficiency dVm = 0 for m = 1 only.

Actually, this made it possible to approximate local entropy inequalities in classical viscosity–entropy
theory. Remarkably, for Riemann’s problems, the total variation remains bounded, so Helly’s theorem
for functions of bounded variation can be applied similar to the classic case m = 1. Unfortunately, other
unsolvable difficulties arise.

As a first step, as a preamble to other approximation problems, we easily demonstrate that, for any
m ≥ 2, parabolic approximations correctly describe entropy solutions of Riemann’s problems for (1.1)
with initial data

S∓(x) = ∓sign x, (1.10)

which lead to shock and rarefaction waves, respectively. We prove that S−(x) is a proper solution, i.e.,
is obtainable by higher-order approximations, while S+(x) is not and, as initial data, lead to a standard
self-similar rarefaction wave.

The results for the 2mth-order approximation of arbitrary entropy solutions generates the two key
asymptotic (large-time behavior) problems for the corresponding rescaled 2mth-order parabolic equations
(which can be solved for some equations such as (1.4)):

(I) asymptotic stability of the viscosity shock profile (Sect. 6), and
(II) asymptotic stability of the rarefaction profile (Sect. 8).
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We also discuss other types of quasilinear 2mth-order approximations of entropy solutions, including
quasilinear parabolic or even thin-film-type regularizations

ut + uux = −ε(1 + u2)uxxxx, ut + uux = −εu2 uxxxx, ut + uux = −ε(u2uxxx
)

x, (1.11)

for which applications of known methods become very difficult, if not possible. Relying on straightforward
numerical evidence, we check that, for all types of regularization in (1.11), S−(x) remains a proper shock.
We also briefly discuss similar properties of the regularized cubic equation

ut + u2ux = −εuxxxx, (1.12)

with initial data H(−x), where H is the Heaviside function. We show that there exists an approximating
sequence {uε} such that, in L1,

uε(x, t) → H
(

1
3

t − x
)

as ε → 0+.

Other related approximation problems are studied in Sect. 7. In particular, we consider parabolic
approximations of odd-order PDEs including our second model

ut − (uux)xx = −εuxxxx
(
or . . . = εuxxxxxx, etc.

)
, (1.13)

which for ε = 0 represents a nonlinear dispersion model for pattern formation in liquid drops. Such equa-
tions are known to admit solutions with finite interfaces and singularities. For instance Rosenau–Hyman’s
equation

ut − (uuxx)x = uux,

see [39], possesses non-smooth compactly supported solutions with discontinuous derivatives Dk
xu for any

k ≥ 2. See [38, Ch. 4] for various exact solutions and related mathematical aspects of such odd-order
PDEs. Entropy theory for odd-order equations such as (1.13) seems to be nonexistent and, most probably,
entropy-like characterization cannot be represented as an explicit inequality (or a differential inclusion)
for classes of such PDEs.

It is remarkable that the stationary shock S−(x) turns out to be proper for (1.13) with ε = 0, i.e.,
approachable by regular solutions {uε} of (1.13). For S+(x), existence of the rarefaction self-similar solu-
tion is studied numerically (the corresponding ODEs are not easy at all). On the contrary, for initial data
S−(x) given in (1.10), it is proved that such a rarefaction similarity solution describing evolution collapse
does not exist. This confirms that S−(x) does exist as a proper (entropy) standing shock wave.

In this paper, several accompanying rigorous and formal asymptotic results are given. We intend to show
that, even in simpler models such as (1.11) or in more general and related PDEs like (1.13), one cannot
expect powerful compensation compactness techniques to be applied, so that convergence of {uε}, as ε → 0,
towards entropy solutions needs a delicate asymptotic analysis of the corresponding singularity-formation
phenomena (shock layers), which is an unavoidable difficulty. In this and other related approximation
problems connected with general extended semigroup theory of nonlinear degenerate or singular higher-
order PDEs, the questions of existence, uniqueness, and asymptotic behavior of limit-proper solutions
cannot be studied separately, they are indivisible, and cannot be tackled in sufficient generality by known
traditional unified techniques borrowed from classical theory.

2 Entropy conditions and Gel’fand’s ODE admissibility concept

2.1 Entropy inequalities

It has been known since the 1950s that the Cauchy problem for general single conservation laws admits
a unique entropy solution. We refer to the first complete results by Oleinik, who introduced entropy
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conditions in 1D and proved existence and uniqueness results (see survey [33]) and by Kruzhkov [40], who
developed a general non-local theory of entropy solutions in RN . In the general case, one of Oleinik’s local
entropy conditions has the form [33, p. 106]
u(x1, t)− u(x2, t)

x1 − x2
≤ K(x1, x2, t) for all x1, x2 ∈ R, t > 0, (2.1)

where K is a continuous function for t > 0. Oleinik’s local condition E (Entropy) introduced in [41], for
the model equation (1.1) with convex function ϕ(u) = 1

2 u2 corresponds to the well-known principle of
non-increasing entropy from gas dynamics,

u(x+, t) ≤ u(x−, t) in Q, (2.2)

with strict inequality on lines of discontinuity, [33, p. 101].
Kruzhkov’s entropy condition on the solution u ∈ L∞(Q) [40] is the nonlocal inequality

|u − k|t + 1
2

[
sign(u − k)(u2 − k2)

]
x ≤ 0 in D′(Q) for any k ∈ R. (2.3)

This inequality is understood in the sense of distributions meaning that the sign ≤ is preserved after
multiplying the inequality by any smooth compactly supported cut-off function ϕ ∈ C∞

0 and ϕ ≥ 0 and
integrating by parts. Oleinik’s and Kruzhkov’s approaches coincide in the 1D geometry.

Beginning with the first rigorous results by Hopf [42] (previous ones were due to Burgers [43]) it has
been known that entropy solutions can be obtained by the vanishing-viscosity method, i.e., as the limit
(1.3) of a sequence of classical solutions {uε} of the Cauchy problem for Burgers’ equation (1.2) with the
same initial data. The convergence in (1.3) takes place in L1(R) for t > 0 and is pointwise at any point of
continuity of u(x, t). Approximations of the initial data can be included, where

uε(x, 0) = u0ε(x) → u0 as ε → 0 in L1. (2.4)

See the comparison theorem in [40] and [33] for surveys of results on general 1D hyperbolic equations. We
refer to the well-known book by Smoller [3] and recent monographs by Dafermos [2] and Bressan [1] for
more detailed information.

The following consequence of the parabolic approximation is of principal importance for the theory.
Let E′(u) be a monotone C1-approximation of the sign-function sign(u − k) with a fixed k ∈ R, i.e., E(u)
is an approximation of |u − k|. Multiplying Eq. 1.2 by E′(u)χ with a nonnegative test function χ ∈ C1

0(Q)
and integrating over Q yields

−
∫∫

[E(u)χt + F(u)χx] dx dt = − ε
∫∫

E′′(u)(ux)
2χ dx dt + ε

∫∫
E(u)χxx dx dt ≡ J1(ε),

where F(u) = ∫
uE′(u)du. The first integral on the right-hand side is non-positive, while the second is of

order O(ε) on uniformly bounded regularized solutions uε. Passing to the limit ε → 0 yields that the limit
solution obtained by (1.3) satisfies the nonlocal Kruzhkov–Lax entropy inequality (see [44] for hyperbolic
equations and [45] for systems),

E(u)t + F(u)x ≤ 0 in D′(Q). (2.5)

For single conservation laws in RN , Eq. (2.5) being true for any convex C2-function E : R → R, gives a
definition of unique entropy solutions, equivalent to (2.3) see [44], [40, p. 241] and [46]. Note that this is
related to a parabolic version of Kato’s inequality [47]: if u, f ∈ L1

loc(Q), then (see [48, p. 75])

ut −�u = f in D′(Q) 	⇒ |u|t −�|u| ≤ f in D′(Q). (2.6)

2.2 ODE-admissible approximations in the sense of Gel’fand

It is well understood in the theory of entropy solutions that a crucial principle is the correct description of
propagation of shock-waves, which are discontinuous travelling waves (TWs) satisfying (1.1) in the weak
sense,
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u(x, t) = S(η), η = x − λt, (2.7)

where λ is the TW speed and S(η) is a step function. Using obvious scaling and translational invariance of
the equation, we set λ = 0. Assuming that the discontinuity is located at x = 0, by the Rankine–Hugoniot
condition

λ = 1
2

[S(0+)+ S(0−)], (2.8)

this corresponds to two initial functions with the following entropy solutions of (1.1) (Riemann problems):

S−(x) = −sign(x) 	⇒ u(x, t) = S−(x) for t > 0, (2.9)

and

S+(x) = sign(x) 	⇒ u+(x, t) =
{

S+(x) for |x| ≥ t,
x
t for |x| ≤ t.

(2.10)

The first discontinuous TW S−(x) (called a standing shock wave in gas-dynamics) is the entropy one. S+(x)
is not an entropy and the solution u+(x, t) in (2.10), continuous for t > 0 (the rarefaction wave), describes
the collapse of this initial singularity.

Consider now a higher-order approximation of the conservation law, where the regularizing sequence
{uε} is given by the Cauchy problem for the 2mth-order uniformly parabolic equations (1.4) of arbitrary
order 2m ≥ 4. Note that (1.4) is invariant under a two-parametric group of scalings and translations, so
that if u(x, t) is a solution, then

Tαβu(x, t) = β2m−1[u(βx + β2mαt,β2mt)− α] (2.11)

is also a solution for any constants α, β ∈ R.
The approximating operator on the right-hand side of (1.4) is called admissible (or ODE-admissible to

be distinguished from the PDE-one to be introduced later on) if equation (1.4) admits a TW approximat-
ing the entropy S−(x) as ε → 0 in a reasonable topology. The concept of admissible approximations (the
G-admissibility, in what follows) was introduced by Gel’fand in [49] and was developed on the basis of
TW-solutions of hyperbolic equations and systems; see [49, Sects. 2 and 8].

In view of the invariance (2.11), we again put λ = 0 (although there exist other types of solutions
with λ �= 0; see below). From (1.4) we then obtain the ODE for the viscosity shock profile (VSP)
f− corresponding to the entropy shock wave S−(x). It is a sufficiently smooth stationary solution of (1.4)

uε(x) = f−(y), y = x/εα , where α = 1
2m − 1

. (2.12)

Here, f− solves the following ODE problem:

(−1)m+1f (2m) = ff ′ in R, f (−∞) = 1, f (+∞) = −1. (2.13)

The family of solutions (2.12) describes the formation of the singular shock layer as ε → 0 in the ODE.
For m = 1, Eq. (2.13) is solved explicitly to give the unique (up to translation) monotone decreasing VSP

f−(y) = 1 − ey

1 + ey = tanh
y
2

. (2.14)

The VSP f− of (2.13) exists for any m ≥ 2; see [10], [13] and [17]. For the fourth-order approximation
m = 2 it is known to be unique [14] and stable in a weighted Sobolev space [11,12].

Thus the higher-order approximations (1.4) for any m ≥ 1 are G-admissible in this ODE (TW) sense.

3 Well-posedness of higher-order approximations: first L∞ bound

The problem of 2mth-order approximations of first-order PDEs seems to have been less studied in the
literature. Higher-order parabolic equations of the type (1.4) are well-posed and admit unique smooth clas-
sical solutions local in time [34,35]. For m = 1, global existence and the uniform bound |u(x, t)| ≤ sup |u0|
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follow from the Maximum Principle. Such global existence results for higher-order semilinear parabolic
equations with lower-order nonlinear perturbations are known in classes of sufficiently small initial data;
see [50–53]. Estimates in Sobolev spaces of solutions of PDEs (1.4) can be found in [28]. For m = 2, global
existence is established in [11,12] via stability analysis of the VSP (i.e., for initial data sufficiently close
to f−).

Thus, it is important to confirm that, for any m ≥ 2, solutions of (1.4) are global in time and cannot blow
up in the L∞-norm. We consider the Cauchy problem (1.4) with initial data satisfying

|u0ε| ≤ C, ‖u0ε‖2 ≤ C, (3.1)

where C > 0 denotes different constants depending on ε. By approximation of L2 initial data with compact
support, we may assume that solutions have fast exponential decay as x → ∞. Multiplying Eq. (1.4) by u
and integrating over R gives

1
2

d
dt

‖u(t)‖2
2 = −ε

∫
|Dm

x u|2 ≤ 0, (3.2)

from which comes the first uniform bound on the solution

‖u(t)‖2 ≤ ‖u0ε‖2 ≤ C for all t > 0. (3.3)

Proposition 3.1 Let m ≥ 2 and (3.1) hold. For a fixed ε > 0, the solution uε(x, t) of (1.4) is uniformly
bounded in R × R+.

The proof is rather technical and is given in Appendix A.

4 On key differences in approximations for m = 1 and m ≥ 2

4.1 Non-monotonicity of the VSP and the variation deficiency

We now describe a crucial non-monotonicity property of the VSP for m ≥ 2, which directly prohibits any
parabolic approximations of local entropy conditions. Denote by |f−|TV the total variation of f−(y) on R.
We introduce the variation deficiency dVm of f− as follows.

Proposition 4.1 For any m ≥ 2, the VSP f− given by (2.13) has bounded variation,

|f−|TV > 2 = |S−|TV 	⇒ dVm ≡ |f−|TV − |S−|TV > 0. (4.1)

Proof As y → ∞, the linearized ODE (2.13) has the form

(−1)m+1f (2m) = −f ′,

so that the exponential decaying behavior is determined by functions

f (y) ∼ eµy

with the characteristic equation

(−1)m+1µ2m−1 = −1;

see [54, Ch. 3]. For any m ≥ 2, solutions are oscillatory for y = +∞, i.e., the characteristic number µ with
the maximal Re µ < 0 is such that Im µ �= 0. This implies (4.1). ��

The variation deficiency (4.1) shows that a finite discontinuity of variation occurs for ε = 0+ for shocks
of entropy solutions (although, in order to justify this, one needs the asymptotic stability of the VSP; see
Sect. 6). Note that dVm vanishes for the second-order approximation m = 1 only and, actually, this lies
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Fig. 1 The VSP and TW solutions of (4.2) for m = 2 (a) and m = 3 (b)
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Fig. 2 The VSP and TW solutions of (4.2) for m = 4 (a) and m = 5 (b)

at the heart of parabolic approximations of local entropy inequalities in classical entropy theory. We will
conclude that for m ≥ 2 this is not possible.

In Figs. 1 and 2 we show the stationary shock together with moving TWs,

− λf ′ + ff ′ = (−1)m+1f (2m). (4.2)

Figure 3 for m = 7 illustrates the fact that, for large m’s, the total variation of TW profiles with λ �= 0 (and
essential deviation from the odd structure for λ = 0) can increase dramatically via high oscillations near
the shock. All these satisfy

(−1)m+1f (2m−1) = −λf + 1
2

f 2 + C, (4.3)

obtained from (4.2) on integration. The constant C = C(λ, f±) depends on the limit values

f± = lim
y→±∞ f (y).

It follows from (4.3) that f± = ∓1 for λ = 0 only, and then C(0, ∓1) = − 1
2 .

For all m = 2, 3, 4, 5, 6, 7, the applied iterative numerical method detects a fast (exponential) conver-
gence to the unique stable VSP. Recall that, rigorously, stability is known for m = 2 only, [11,12,15]. For
comparison, Figs. 4 and 5 shows the character of non-monotonicity of the VSPs (λ = 0), which can be asso-
ciated with typical oscillating and sign-changing properties of the fundamental solutions of higher-order
parabolic operators [34]. We complete this discussion by stating an open problem.

Conjecture 4.1 For any m ≥ 3, there exists a unique exponentially stable VSP.
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Thus, for m ≥ 2, the total variation-diminishing (TVD) property of entropy solutions,

|u(t)|TV ≤ |u0|TV ≡ ‖u′
0‖M1 for all t > 0 (4.4)

(M1 is the space of bounded Radon measures), is violated. This property remains valid for approximations
with m = 1 and admits further extensions; see [55].

Next, we consider straightforward consequences of Proposition 4.1 prohibiting the approximation of
other entropy conditions.

A relation to order deficiency: Here we observe a phenomenon similar to the order deficiency [53] that
can be expressed in terms of the following constant:

D∗ =
∫

|F| > 1 for all m ≥ 2,

that measures a “degree” of violation of order-preserving properties of semigroups induced by higher-order
parabolic operators ∂/∂t+(−�)m (being order-preserving for m = 1 only, where F > 0 and hence D∗ = 1).
We easily show that the same order deficiency is responsible for the finite increase of total variation in
higher-order linear parabolic flows.

Proposition 4.2 Let m ≥ 2 and u(x, t) satisfy the Cauchy problem

ut = ε(−1)m+1D2m
x u in R × R+, u(x, 0) = u0(x) in R.

Then: (i) the following estimate holds:

|u(t)|TV ≤ D∗|u0|TV for t > 0, with the constant D∗ =
∫

|F| > 1, (4.5)

and (ii) estimate (4.5) is sharp for bounded data u0 ∈ L∞.

For the proof, see Appendix B.
Therefore, the main difficulty in higher-order parabolic approximations is not establishing the compact-

ness of the family {uε} and using Helly’s theorem for functions of bounded variation; cf. its systematic
applications in [33] is for m = 1. It is crucial that, in this case, the convergence uε → u to the entropy
solutions assumes an extra hard asymptotic analysis and this cannot be avoided when estimating the total
variation of solutions to (1.4).
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4.1.1 The cubic equation

Consider briefly the regularized PDE (1.12). For ε = 0, the Rankine–Hugoniot condition takes the form

λ = 1
3

[S2(0+)+ S2(0−)+ S(0+)S(0−)]
(

= 1
3

for S(0−) = 1, S(0+) = 0
)

.

After scaling out the parameter ε, the TW profiles solve the ODE

− λf ′ + f 2f ′ = −f (4). (4.6)

In Fig. 6 we show three such profiles including the one (the bold line) corresponding, as ε → 0, to step-like
initial data,

u0(x) = H(−x), (4.7)

with λ = 1
3 , where H(−x) is the reflected Heaviside function

H(−x) =
{

1 for x ≤ 0,
0 for x ≥ 0.

Hence,

f
(
y/ε

1
3
) → u−(x, t) = H

(
1
3

t − x
)

as ε → 0.

For initial data H(x), we have the rarefaction solution (limit ε → 0 is not studied)

u+(x, t) =
⎧
⎨

⎩
H(x) for x ≤ 0, x ≥ t;

√
x
t for 0 ≤ x ≤ t.

We observe the typical oscillatory behaviour of viscosity shock waves. In what follows, we return to
quadratic nonlinearities, although most of the results and conclusions can be extended to cubic models.
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4.1.2 VSPs for quasilinear and thin-film-type regularizations

The VSPs corresponding to S−(x) for PDEs (1.11) are presented in Fig. 7. Notice the huge defect of
variation dV2 ∼ 120 of the profile on (b) corresponding to the approximation via the “non-fully diver-
gent” thin-film operator in the last PDE in (1.11). Here we have used the regularization in the degenerate
differential term by replacing

f 2 �→ δ + f 2

with δ = 10−4, so decreasing δ increases dV2, which reaches ∼160 for δ = 5 × 10−5.

4.2 Regularized solutions do not satisfy Oleinik’s upper gradient bound

In the second-order approximation (1.2), it is known that, for general hyperbolic equations, it is sufficient
to choose

K(x, t) = C
t

in the entropy inequality (2.1); see [33, p. 145]. This follows from the Maximum Principle for (1.2), since
the derivative w = uεx satisfies the parabolic equation

wt = εwxx − uwx − w2 (4.8)

which possesses the explicit solution

w∗(t) = 1
t

for t > 0, w∗(0+) = +∞. (4.9)

Therefore, as a straightforward consequence, by comparison of solutions to (4.8) one obtains the following
upper gradient bound for arbitrary initial data (including both shocks u0 = S±(x)where for S+ translations
in time are performed):

uεx ≤ 1
t

in Q. (4.10)

This makes it possible to get in the limit (1.3) the entropy solutions satisfying (2.1).
Let now m > 1 in (1.4). Then similarly we get for w = uεx the equation

wt = ε(−1)m+1D2m
x w − uwx − w2 (4.11)
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which possesses the same explicit solution (4.9) although the Maximum Principle does not apply and (4.10)
does not follow. Anyway, the negative quadratic term −w2 on the right-hand side of (4.11) stays the same
and suggests to assume that K(x, t) = C

t with some C � 1 possibly depending, in view of (2.1), on u(x, t).
Just in case, we write down such a suggestion in the general form: for ε ≈ 0+,

uεx ≤ K(x, t) uniformly in Q, (4.12)

assuming that K is bounded for t > 0. We now easily prove that this is not the case, and hence the uniform
estimates (4.10) or (4.12) are associated with the Maximum Principle for second-order PDEs such as (1.2)
only.

Proposition 4.3 For m ≥ 2, (i) (4.12) does not hold with any function K(x, t) uniformly bounded in x ∈ R
for t > 0, and (ii) the same is true for the discrete relation (2.1).

Proof (i) Approximating (2.12), as ε → 0,

uε(x) = f−(y) → S−(x) in L1(R) and a.e., y = x/εα , α = 1
2m − 1

, (4.13)

Eq. 4.12 implies that for any fixed t > 0,

f ′−(y) ≤ ε2m−1K(x, t) → 0 as ε → 0, (4.14)

which leads to f ′−(y) ≤ 0 contradicting Proposition 4.1.
(ii) Let, for definiteness, f−(y) be oscillating as y → −∞. Taking the family (2.12) and using the fact that

δ0 = f−(y1)− f−(y2) > 0 for some y2 < y1 < 0, (4.15)

we have

uε(x1)− uε(x2)

x1 − x2
= δ0

(y1 − y2)εα
→ +∞ as ε → 0,

i.e., Eq. 2.1 does not hold on the family {uε} approximating the entropy shock wave S−. ��
Obviously, there is no way to improve such a “bad” property of higher-order approximations, for instance,

by neglecting the uniformity of (2.1), i.e., assuming that uε satisfies (2.1) for any |x1 − x2| ≥ C(ε) → 0 with
C(ε) � εα as ε → 0 (so that at ε = 0+ we arrive at (2.1)). Indeed, taking as above x2 = y2ε

α , where y2 < 0
is the point of the absolute maximum of f−(y), and x1 ∼ x2 − C(ε), we still obtain the divergence

uε(x1)− uε(x2)

x1 − x2
≥ δ0

2C(ε)
→ +∞ as ε → 0.

In the given TW-approximation of S−(x), the approximating sequence satisfies

sup
x

uεx(x, t) → +∞ as ε → 0 (4.16)

and, moreover, we will introduce strong evidence of the fact that (4.16) is a generic property of higher-order
approximations of any entropy shocks. Therefore, any family {uε} converging to a discontinuous entropy
solution cannot approximate the entropy condition (2.1) in the sense of (4.12), which is directed to delete
shocks S+ from the entropy class. On the other hand, if K(x, t) is not bounded for t > 0, e.g.,

K(x, t) = C
|x|

(this leads to a reasonable estimate of uεx), then estimate (2.1) does not exclude the non-entropy solution
S+(x) either.
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4.3 Regularized solutions do not approximate Oleinik’s condition E

It follows from (4.15) that for arbitrarily small ε > 0, there exists the point x̄ = 1
2 (y1 + y2)ε

α and
h = 1

2 (y2 − y1)ε
α such that for a constant δ0 > 0, one has

uε(x̄ + h, t) ≥ uε(x̄ − h, t)+ δ0, where h = O(εα). (4.17)

In this sense, due to the non-monotonicity of the VSP, regularized solutions {uε} do not approximate the
condition E (2.2) as ε → 0.

As a next corollary of Proposition 4.1, bounded variation of uε(x, t) in x for t > 0 (and hence suitable
compactness of the family {uε}) cannot be proved via the local entropy conditions (2.1) or (2.2). For m = 1,
this is a classical approach for 1D problems; see applications of the theory of functions with bounded
variation and Helly’s theorem throughout Sects. 2–4 in [33]. One can expect that uε has uniformly bounded
variation as ε → 0, but this cannot be established in such a straightforward way as for m = 1.

It seems that for establishing the compactness of {uε} for m ≥ 2 for equations in 1D, the analysis in
the class BV(RN) of functions of bounded variations (see [3, Ch. 16] and [1]) or estimates for compact-
ness in L1(RN) [40] can be useful, which are powerful tools for solving hyperbolic equations in RN . It
is worth mentioning that both approaches are based on the Maximum Principle ideas. For instance, the
main estimates in [40, pp. 232–237] use comparison barrier techniques and do not extend to higher-order
equations.

The only case where (4.14) does not lead to a contradiction is m = 1, when the VSP (2.14) is monotone,
a property to be associated with the Maximum Principle for the second-order ODE (2.13). In Sect. 7, we
introduce higher-order models with monotone VSPs, which is important for their asymptotic stability.

4.4 Direct approximation of the nonlocal entropy inequality is impossible for problem E′′–E′′′′

Let us finally show that the special “geometry” of the VSP affects also parabolic approximations of the
nonlocal entropy inequality (2.5), although not in such a direct way as the local ones above.

The derivation of the entropy inequality (2.5) from (2.5) is associated with the Maximum Principle for
the second-order parabolic equations. One can see that (2.5) cannot be obtained in such a way if m > 1.
For instance, let m = 2. Multiplying (1.4) by E′(u)χ and integrating by parts yields the following right-hand
side in (2.5):

J2(ε) = − ε
∫∫ [

E′′(u)(uxx)
2 − 1

3
E′′′′(u)(ux)

4
]
χ dx dt

+ ε
∫∫ [

4
3

E′′′(u)(ux)
3χx + 2E′′(u)(ux)

2χxx − E(u)χxxxx

]
dx dt.

(4.18)

Consider the first integral in (4.18) depending on χ only, while the second contains x-derivatives of χ which
hence may be assumed to vanish on any open subset inside suppχ . We observe here two terms, the first
positive one with E′′ ≥ 0 and the second one depending on E′′′′, which can have any sign (actually, if E(u)
is sufficiently close to |u − k|, then E′′′′ changes sign). We will show below that multiplicative, interpolation
inequalities comparing the two terms do not help for coefficients given by sufficiently arbitrary smooth
convex E(u). Taking into account the above rescaled variable y = x/ε

1
3 (assuming shock to be put at x = 0),

we have that both terms in the integral are of the same order O(ε− 4
3 ), i.e., even this precise structure of

the singular shock layer is not enough to guarantee the necessary sign. Therefore, in order to get the
entropy condition (2.5) directly, it will be necessary to discuss the following problem E′′–E′′′′ first: is there
a sufficiently wide set of smooth functions E(u) satisfying

E′′(u) ≥ 0 and E′′′′(u) ≤ 0 in R? (4.19)
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Obviously, such non-trivial bounded E’s do not exist (E′′(u) is sufficiently smooth, nonnegative, concave
in R, hence E′′ ≡ const). More involved E′′–E′′′′–E(6) − . . . unsolvable problems occur for m = 3, 4, . . ..
This expresses the fact that Kato’s inequality (2.6) (or multiplication by sign) does not admit extension to
higher-order operators ∂t/∂ + (−�)m.

4.5 Interpolation inequalities do not guarantee the sign

These aspects will be discussed in Appendix C.

5 Parabolic approximation of shock waves S±(x)

5.1 Proper and improper solutions

We now begin a more general analysis of the admissibility of various higher-order approximations of
odd-order equations in the PDE sense. As a key example, we continue to study the Cauchy problem (1.4)
and will use the following definition, which includes standard properties of weak (generalized) solutions
of conservation laws; see [33] and [3, Ch. 15].

Definition 5.1 We say that a weak solution u(x, t) of the conservation law (1.1) is m-proper, iff there exists
a bounded sequence of initial data {u0ε} → u0 in L1 as ε → 0 such that the family of classical solutions
{uε(x, t)} of the 2mth-order parabolic problems (1.4) satisfies

uε(x, t) → u(x, t) in L1 for any t ≥ 0, (5.1)

where u(x, t) is proper if it is m-proper for any m ≥ 2.

Classical theory for m = 1 says that

u(x, t) is 1-proper ⇐⇒ u(x, t) is entropy. (5.2)

According to the definition, proper solutions u(x, t) are only those which can be obtained by arbitrary 2mth-
order parabolic approximations (1.4). Sometimes we will omit “m” from the “m-proper”, if no confusion
is likely. Keeping “m” can be key for other higher-order models with different viscosity approximation, for
which the convergence results for any m ≥ 2 are more difficult. The definition includes “approximation”
of initial data. Indeed, once convergence (5.1) has been established for fixed data u0n, so uεn → un as
ε → 0, convergence uεn → u relative to both ε, n follows for arbitrary L1-approximation of data u0n → u0
as n → ∞ by the triangle inequality,

‖uεn(t)− u(t)‖1 ≤ ‖uεn(t)− un(t)‖1 + ‖un(t)− u(t)‖1, (5.3)

since un → u in view of comparison theorems for entropy solutions, [33,40].
The concept of proper solutions plays an important role in the theory of nonlinear singular parabolic

equations creating finite-time singularities like blow-up, extinction, or quenching, where regular approxi-
mations (truncation of nonlinearities) make it possible to construct unique, maximal or minimal, extensions
of solutions beyond singularity time; see [56] and earlier references therein. Another area, where approx-
imation approaches are important, concerns nonlinear evolution equations with singular initial data, e.g,
with measures as initial conditions. Then weak solutions can cease to exist; see the pioneering results in
[48]. In this case approximation of singular data is of principal importance and approximation of equations
is not necessary. Such extended semigroups constructed by approximation can be essentially discontinuous
in any weak sense or in the sense of measures, and other concepts of solutions (demanding more detailed
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information on solutions properties) often do not apply. For instance, the positive approximation of non-
negative initial data, u0ε(x) = u0(x)+ε, with ε > 0, in constructing weak solutions u = lim uε of degenerate
filtration equations

ut = (ϕ(u, x))xx, ϕ′
u(0, x) = 0 (ϕ(u, x) = u2 for the porous medium equation)

is no more than folklore after the seminal paper [57].
Clearly, such a proper solution concept is not necessary for the conservation laws, where classical entropy

solution theory applies. It will be used below simply to test the concept and identify specific asymptotic
properties to be treated later on. For a class of higher-order problems including (1.13) to be studied in
Sect. 7, where entropy theory is not available, the concept of approximation becomes a key ingredient.

Let uε(x, t) in Q+ = R+ × R+ be odd in x, so as to satisfy the anti-symmetry conditions

Dk
xu(0, t) = 0 for t > 0, k = 0, 2, . . . , 2m − 2. (5.4)

As the next step, we use in (1.4) the scaling

uε(x, t) = Uε(y, τ), y = x/εα , τ = t/εα , with exponent α = 1
2m − 1

, (5.5)

where U = Uε solves a uniformly parabolic equation of the form

Uτ + UUy = (−1)m+1D2m
y U, with initial data Uε(y, 0) = U0ε(y) ≡ u0ε(yεα). (5.6)

The scaling (5.5) establishes as ε → 0 a “parabolic zoom” for weak solutions of the conservation law in
a shrinking neighborhood of any point (x0, t0) in the {x, t}-plane (by replacing x → x − x0 and t → t − t0
in (5.5)). Therefore, it is important to describe the character of “smeared” shocks created by parabolic
approximations. As we have seen, scaling (5.5) deletes the small parameter ε from the equation and U
solves the uniformly parabolic equation (5.6). Global solvability follows from Proposition 3.1.

For any m ≥ 1, Eq. (5.6) has the explicit linear solution

Ū(y, τ) = y
τ

(
ūε(x, t) = x

t

)
in Q, (5.7)

which occurs in the entropy rarefaction solution (2.10). Later on, the asymptotic stability of this rarefaction
profile will be of crucial importance in our analysis.

The next two conclusions are elementary and apply to other models in Sect. 4.1.

Proposition 5.1 The entropy shock wave S−(x) is proper.

Proof Let f be a solution of (2.13) with any m ≥ 2. Then, since the convergence f−(y) → ±1 as y → ∓∞
given by the ODE (2.13) is exponential [54], the following holds:

uε(x) = f−(x/εα) → S−(x) as ε → 0 (5.8)

in L1, pointwise and uniformly on sets {|y| ≥ c} with any c > 0. ��

On the other hand, it is easy to see that a VSP f+ corresponding to the non-entropy solution S+(x) does
not exist. The proof applies to the ODEs corresponding to all three models in (1.4).

Proposition 5.2 The problem for f+,

(−1)m+1f (2m) = ff ′ in R, f (−∞) = −1, f (+∞) = 1, (5.9)

does not have a solution.
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Proof Integrating the equation once yields

(−1)m+1f (2m−1) = 1
2
(f 2 − 1).

Multiplying by f ′ and integrating over R again by using exponential decay of the derivative f (2m−2)(y) as
y → ±∞, we get the contradiction
∫
(f (m))2 = −2

3
.

��
Nonexistence of f+ is of a general nature and holds for various types of quasilinear divergent parabolic

approximations. For instance, if instead of (1.4) we consider a parabolic regularization via the quasilin-
ear p-Laplacian operator (gradient-dependent diffusivity coefficients are natural in the regularization of
conservation laws; see [49]),

ut + uux = ε(−1)m+1Dm
x

(|Dm
x u|p−2Dm

x u
)
, p > 1, (5.10)

then the corresponding “non-entropy” VSP f+ given by

uε = f+(y), y = x/εα , where α = 1
mp − 1

,

is a weak solution of the ODE

(−1)m+1(|f (m)|p−2f (m))(m) = ff ′, f (−∞) = −1, f (+∞) = 1. (5.11)

Integrating once yields

(−1)m+1(|f (m)|p−2f (m))(m−1) = 1
2
(f 2 − 1)

and multiplying by f ′ and integrating over R leads to the same contradiction
∫

|f (m)|p = −2
3

.

It seems that no reasonable divergent elliptic operators on the left-hand side of (5.11) can produce a
heteroclinic connection −1 → 1 in the corresponding ODE. For such approximation operators, this can be
done only by taking negative parameters ε < 0 (then f+ becomes f−), creating ill-posed parabolic equations
backward in time.

Nonexistence of the VSP does not trivially imply that S+(x) is not proper, i.e., cannot be obtained by
parabolic approximations. In this sense, the case m = 1 is exceptional since the proof is straightforward
by comparison with the exact solution (5.7). Indeed, if uε is an approximation, then uε(x, t) ≤ x

t in Q+.
Hence, uε(x, t) cannot stabilize to S+(x) as ε → 0. For m > 1, where the semigroup induced by Eq. 5.6 is
not order-preserving, we cannot use comparison, and the result is based on a Lyapunov-type analysis that
easily extends to the two first PDEs in (1.4).

Proposition 5.3 S+(x) is not a proper solution.

Proof Without loss of generality, we assume that Uε(x, t) → 1 as y → +∞ sufficiently fast (e.g., exponen-
tially, which happens if U0ε(y) = 1 for y � 1, following from the exponential decay of the fundamental
solution of the parabolic operator [34]). Then all integrations below make sense. Multiplying Eq. 5.6 by U
and integrating over R+ yields a Lyapunov function that is monotone decreasing on evolution orbits,

d
dτ
�(U)(τ ) ≡ 1

2
d

dτ

[∫ ∞

0
(U2 − 1)dy

]
= −1

3
−

∫ ∞

0

(
Dm

y U
)2 dy ≤ −1

3
. (5.12)
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Therefore,

�(U)(τ ) ≤ −τ
3

+�(U0ε) for τ > 0.

Using the rescaled variables given in (5.5), we have that, for any t > 0,
∫ [

u2
ε(x, t)− 1

]
dx ≤ −2t

3
+ 2�(u0ε). (5.13)

Passing to the limit ε → 0 and using that uε → S+ in L1 (then�(u0ε) → 0), we obtain a contradiction in the
inequality (5.13). The analysis applies to the Cauchy problem in Q without the anti-symmetry conditions
(5.4). ��

5.2 On the asymptotics of singular layer for S−

This is much more difficult, and only local asymptotic estimates are known rigorously. Concerning formal
asymptotic expansions as ε → 0, notice that even the case m = 1 is rather difficult to justify; see Il’in [58,
Ch. 6]. For instance, it is worth mentioning that the appearance of the logarithmic expansion terms log ε
in [58, p. 235] is justified by multiple reductions of Burgers-like equations to the heat equation. Obviously,
this is not possible for m > 1.

We discuss the structure of a connecting orbit S− �→ f , m ≥ 2, for the problem (5.6) with initial data
S−(y). In the main Region I, with τ � 1, we use the rescaled variables

η = y/τ
1

2m , s = log τ → −∞ as τ → 0,

so that the PDE for U = U(η, s) contains an exponentially small perturbation,

Us = AU − e
3s
4 UUη as s → −∞. (5.14)

Here

A = (−1)m+1D2m
η + 1

2m
ηDη (5.15)

is a linear non-self-adjoint operator. It has the discrete spectrum
{− k

2m < 0, k ≥ 1
}

in a weighted L2-space
L2
ρ , with the weight

ρ = ea|η|α , α = 2m
2m − 1

,

where a > 0 is small enough, with a complete and closed set of eigenfunctions {ψk}, compact resolvent,
etc.; see [52] and Appendix D, where the adjoint operator A∗ with eigenfunctions {ψ∗

k } are studied, for
greater detail. Therefore, passing to the limit s → −∞ in (5.14), we have that such a solution satisfies in L1

U(η, s) → θ(η) as s → −∞, (5.16)

so U(η, s) stabilizes to a stationary solution θ(η),

Aθ ≡ (−1)m+1θ(2m) + 1
2m

ηθ ′ = 0 in R, θ(±∞) = ∓1. (5.17)

Since θ(η) satisfies the poly-harmonic equation

Uτ = (−1)m+1D2m
y U

with initial data S−(y), we have

θ(η) = 1 − 2
∫ η

−∞
F(ζ )dζ , where F is the kernel in (A.1).
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Fig. 8 Solutions θ of the ODE (5.17) for m = 2 (a) and m = 3 (b). VSPs f solving (5.13), λ = 0, are given for comparison

Figure 8 shows functions θ for m = 2 and 3, together with the corresponding VSP profiles, i.e., stationary
solutions of (5.6). It is remarkable that θ and f have very similar shapes. Therefore, further evolution
consists of a slight deformation of these shapes to match the stationary profiles in Region III, for t � 1.
Beforehand, in the intermediate Region II, with τ = O(1) (s = O(1)), we can use Eq. 5.14, where we apply
the approximation (5.16) in the nonlinear term to get, by convolution with the fundamental solution (A.1)
(here ε = 1 and x, t �→ η, s),

U(y, τ) ≈ θ(η)− 1
2

∫ τ

0
(τ − ρ)−

1
m dρ

∫ ∞

−∞
F ′

(
y − z

(τ − ρ)1/2m

)
θ2

(
z

ρ1/2m

)
dz, η = y

τ 1/2m
. (5.18)

The first function θ(η) describes the above “parabolic” smoothing of the shock for small τ , while the second
opposite term prevents further collapse of the step behavior and thus describes the intermediate stage of
attracting to the VSP f−(y). For deriving matching conditions between Regions I–II and II–III contained
in (5.18) and describing the connecting heteroclinic orbit, spectral properties of linearized operators in
Regions I (see Appendix D) and III (see Sect. 6) are of paramount importance. Namely, in Region I, the
perturbed behavior is as follows:

U(y, τ) = θ(η)+ e
3s
4

(
A − 3

4
I
)−1

θθ ′ + · · · as s → −∞
(

3
4

�∈ σ(A)
)

. (5.19)

In Region III, we have

U(y, τ) = f−(y)+ Ceλ1τ ψ̂1(y)+ · · · as τ → +∞, (5.20)

where λ1 < 0 is the first negative eigenvalue with eigenfunction ψ̂1 of the linearized (about f−) operator
N2m to be introduced in (6.2). We expect that (5.19), (5.20) determine a heteroclinic connection S− �→ f
(in the rescaled variables, it is θ �→ f ). Rigorously, problems of connecting orbits remain open for all
semilinear higher-order parabolic PDEs, since Sturm’s First Theorem on zero sets applies for m = 1 only.

5.3 On a formal connection for m = 2 by averaging method

This approach is discussed in Appendix E.

6 Stability of the VSP and entropy inequalities. Asymptotic stability of the rarefaction profile

In this section, we deal with the first asymptotic problem. In view of the negative conclusions of Sect. 4, we
claim that, in general, the convergence (5.1) to entropy solutions cannot be proved without deep under-
standing of the corresponding asymptotic problems. The approximation problem for m ≥ 2 is thus an



On higher-order viscosity approximations of odd-order nonlinear PDEs 193

example, where the existence of a solutions (as the limit of {uε}) cannot be separated from the correspond-
ing parabolic asymptotic theory. As is usual in scaling techniques, due to variables (5.5), the limit ε → 0+
for uε(x, t) in a natural sense is equivalent to τ → +∞ for U(y, τ).

6.1 On the generic formation of the shock layer: stability of the VSP

We now discuss conditions under which the VSP satisfying (2.13) describes the generic formation of the
shock layer in the convergence (5.1) to the entropy shock S−(x). This means that f is the asymptotically
stable stationary solution of the rescaled equation (5.6), so we perform the standard linearization by setting

U(y, τ) = f−(y)+ Y(y, τ), (6.1)

where Y solves

Yτ = N2mY + D(Y) with N2m = (−1)m+1D2m
y − fDy, (6.2)

D(Y) = YYy being the quadratic perturbation. By the principle of linearized stability (see e.g. [59, Ch. 9]),
one needs to study the spectral problem

N2mψ = λψ , (6.3)

where by classical ODE theory [55], ψ(y) is assumed to have exponential decay as |y| → ∞. Multiplying
Eq. 6.3 by ψ̄ in L2(R) and the conjugated one by ψ yields

(Re λ) ‖ψ‖2
2 = −‖ψ(m)‖2

2 + 1
2

∫
f ′(y)|ψ(y)|2 dy. (6.4)

We thus observe another “bad” consequence of the VSP f−(y) being non-monotone: if f ′−(y) changes sign,
then (6.4) does not directly imply the necessary stability condition

Re λ < 0 for λ ∈ σ(N2m), (6.5)

unlike the only case m = 1, where f ′− < 0 by (2.14) and (6.5) follows from (6.4). Nevertheless, since f−(y)
must be “effectively” decreasing as a heteroclinic connection 1 → −1, one can expect that (6.5) remains
true for such f−(y). This is proved in [15] for m = 2 (the proof is partially computational; for an analytic
proof of linear stability, see [12]). As a result, the operator N4 was shown [11] to be sectorial with the
spectrum satisfying (m = 2)

σ(N2m) ⊂ {Re λ ≤ −k} with a constant k > 0, (6.6)

in the weighted Sobolev space H3
ρ(R) with the exponential weight ρ(y) = cosh(µy), where µ > 0 is a small

constant. This guarantees the exponential decay of the semigroup ‖eN2mτ‖L ≤ Ce−kτ in the space of linear
maps L(H3

ρ , H3
ρ), and hence the exponential stability of the VSP by the principle of linearized stability; see

[59, Ch. 9].
It is natural to expect that such stability results are true for arbitrary m > 2. Namely, the eigenvalue

problem (6.3) for the ODE operator N2m in the weighted space L2
ρ(R) of odd functions satisfying (5.4)

with the dense domain H2m
ρ (R), satisfies (6.5) and (6.6). Nevertheless, even a computational proof, which

can be done for m = 3 and 4 by rather standard codes, is expected to get more and more involved for
larger m. Once (6.5) has been proved, the theory of sectorial operators [35,59] and interpolation inequali-
ties apply to guarantee the exponential stability of VSPs. This, in turn, will imply that entropy conditions
(Sect. 2) cannot be approximated in the viscosity sense for any initial data. Furthermore, the variation
deficiency (4.1) scaled according to (2.11) for moving shocks actually then describes locally the “jump” of
total variation at ε = 0.
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6.2 Asymptotic stability of the rarefaction profile

This analysis also features interesting related spectral properties of the linear operators involved and is
performed in Appendix D.

7 On other higher-order models: shocks and approximations

7.1 Preliminary properties of odd-order models

In this section, we describe similarities with higher-odd-order equations from nonlinear dispersion theory
(cf. [39] for m = 2 and [60] for m = 4; see also [38, Ch. 4] for further models and references),

ut + (−1)m−1D2m−2
x (uux) = 0 in Q, u(x, 0) = u0(x) in R, (7.1)

where m = 1 gives the conservation law (1.1). As above, we concentrate on evolution properties of solu-
tions corresponding to initial data S±(x), (1.10). This analysis is a first step towards understanding general
weak solutions of such PDEs. Entropy-like theories for (7.1) for any m ≥ 2 are still not known, so that we
will rely on our proper (extended semigroup) concept of solutions and necessary numerical ODE results.

7.1.1 (i) Similarity shock and rarefaction waves: a PDE admissibility

Consider first the following blow-up (as t → T− > 0) similarity solution of (7.1):

uS(x, t) = g(z), where z = x/(T − t)
1

2m−1 and g solves the ODE (7.2)

(−1)m−1(gg′)(2m−2) + 1
2m − 1

g′z = 0 in R, g(±∞) = ∓1. (7.3)

Assuming, as for m = 1, that g(z) is odd and that g(z) > 0 for z < 0 (to be checked numerically), we set
G(z) = g2(z) to obtain a semilinear ODE with m anti-symmetry conditions at the origin,

G(2m−1) = (−1)m

(2m − 1)
G′z√

G
for z < 0, G(−∞) = 1, G(0) = · · · = G(2m−2)(0) = 0. (7.4)

Such (2m − 1)th-order ODE problems are not easily studied analytically. In this framework, it is crucial
that the asymptotic bundle of solutions as z → −∞, where G(z) → 1, ‘near ODE

G(2m−1) = (−1)m

2m − 1
G′z

and has dimension m. Therefore, this is sufficient to match precisely m conditions at the origin in (7.4). The
oscillatory character of solutions for z � −1 (see below) confirms that this is possible. Uniqueness of such
a matching for m ≥ 2 remains an open problem.

Numerically, we obtain clear evidence on the existence and uniqueness of such smooth solutions g and
we state

Conjecture 7.1 For any m ≥ 2, there exists a unique stable solution G(z) of (7.4).

In Fig. 9 we present the anti-symmetric profiles G(z) > 0 for z < 0 in cases m = 2 (a) and m = 3 (b).
We observe that, on the left-hand side, the similarity profiles G(z) are strongly oscillatory. For m = 2, i.e.,
for the third-order PDE (7.1), this corresponds to the behaviour of the Airy function as z → −∞,

G(z) ∼ 1 + cAi(z) ∼ 1 + c|z|− 1
4 cos

(
a0|z| 3

2 + c0
)

where a0 = 2
9

√
3. (7.5)



On higher-order viscosity approximations of odd-order nonlinear PDEs 195

−80 −70 −60 −50 −40 −30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z

G=g2(z) Gradient blow−up to S
−
(x) and collapse of S

+
(x) for u

t
=(uu

x
)
xx

−120 −100 −80 −60 −40 −20 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z

G=g2(z) Gradient blow−up to S
−
(x) and collapse of S

+
(x) for u

t
+(uu

x
)
xxxx

=0

(a) (b)

Fig. 9 The shock-wave similarity profile G(z) = g2(z) satisfying the ODE (7.4). (a) third-order, m = 2. (b) fifth-order, m = 3

Indeed, as x → −∞ and hence u → 1, Eq. (7.3), with m = 2, becomes asymptotically linear with the
fundamental solution

ut = uxxx 	⇒ b(x, t) = t−
1
3 Ai

(
x

t1/3

)
.

In particular, the asymptotics (7.5) implies that the total variation of any solution of (7.4) (and uS(x, t) for
any t < T) is infinite. It is easy to check, from asymptotics similar to (7.5), that the same holds for any
m ≥ 2. This is in striking contrast with solutions for m = 1, i.e., of (1.1), where finite-variation approaches
are key. In view of conditions at ±∞ in (7.3), for such g(z),

uS(x, t) → S−(x) as t → T− (7.6)

for any x ∈ R, uniformly in R \ (δ, δ), δ > 0 small, and in Lp
loc(R) for p ∈ [1, ∞).

Using the reflection symmetry u �→ −u, t �→ −t of PDEs (7.3), we also conclude that the same similarity
solutions defined for t > 0,

uS(x, t) = g(z), with z = x/t
1

2m−1 , (7.7)

describe collapse as t → 0+ of the non-entropy shock S+(x) = sign x, posed as initial data. Then (7.7) plays
the role of the rarefaction wave for higher-order “conservation laws” such as (7.1). This means that S+(x)
is not an entropy shock.

Thus, the above similarity solution (7.2) of (7.3) describes the formation of the “entropy” shock S−(x)
from sufficiently smooth initial data, while the rarefaction wave (7.7) is responsible for the smooth collapse
of the initial singularity S+(x). This means that these two Riemann problems admit the same treatment for
any order m ≥ 1.

7.1.2 (ii) Quartic nonlinearity

To confirm the generic character of such shocks S−(x), we consider similar PDEs with fourth-degree
nonlinearity

ut + (−1)m−1D2m−2
x (u3ux) = 0 ,

where the blow-up solutions have the same form (7.2), while g and G = g4 solve

(−1)m−1(g3g′)(2m−2) + 1
2m − 1

g′z = 0 	⇒ G(2m−1) = (−1)m

(2m − 1)
G′z
G3/4 (7.8)

with the same boundary conditions. Numerical oscillatory profiles G(z), z < 0, for m = 2 (a) and m = 3
(b), for which (7.6) holds, are shown in Fig. 10.
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Fig. 10 The shock-wave similarity profile G(z) = g4(z) of the ODE (7.8). (a) third-order, m = 2. (b) fifth-order, m = 3

7.1.3 (iii) On non-oscillatory FBP

PDEs (7.1) for m ≥ 2 admit a natural free-boundary setting with typical “zero contact angle” conditions
at levels {u = ±1}. Then, for the above S±–Riemann’s problems, similarity solutions have finite interfaces
and are not oscillatory nearby. This assumes studying the ODE (7.3) with the same number m of conditions
at a free interface position z = a < 0

g(a) = 1, g′(a) = · · · = g(m−1)(a) = 0. (7.9)

By the anti-symmetry conditions at z = 0 in (7.4) we have an (m − 1)-dimensional bundle for z ≈ 0−
that is sufficient to match m conditions (7.9) with a free parameter a. Numerics show the existence and
uniqueness of such a similarity FBP solution g(z) of (7.3), (7.9) for m = 2 and 3. In particular, global
similarity solutions (7.7) represent the rarefaction waves.

Figure 11 shows the RP (the boldface line) for m = 2 and m = 3, obtained numerically by shooting in
the ODE (7.4) for G = g2. Here, we have performed the reflection z �→ −z for convenience, so we are
restricted to the semi-interval (0, a), with the interface position a > 0, putting the free-boundary conditions

G(0) = G′′(0) = 0 for m = 2, and · · · = G(4)(0) = 0 for m = 3.

We extend the solution into (−a, 0) by −G(−z).
For m = 2, (7.3) with z �→ −z this leads to a third-order equation,

(g2)′′′ + 2
3

g′z = 0,

which is invariant under a group of scalings. The change of variables

ξ = log z, g = e3ξ ϕ(ξ), and P(ϕ) = ϕ′

reduces it to a second-order ODE for P, which can be studied to guarantee existence of a suitable RP. For
m ≥ 3, a shooting-type argument is suitable (but indeed difficult) to prove existence, while the origin of
the uniqueness remains obscure and open.

7.1.4 (iv) 2mth-order parabolic approximation

A natural regularization of (7.1) is

ut + (−1)m−1D2m−2
x (uux) = ε(−1)m+1D2m

x u, u(x, 0) = u0ε(x), (7.10)
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Fig. 11 Shooting the RP (the boldface line) satisfying (7.4), z �→ −z, and free-boundary conditions (7.9) for m = 2, a ≈ 2.565
(a) and m = 3, a ≈ 3.392 (b)

where u0ε → u0 as ε → 0+ in a suitable (Lp) topology. The well-posedness of such approximations in
the sense of Proposition 3.1 becomes a much more delicate problem, which will not be studied here. The
corresponding rescalings are

u(x, t) = U
(

x
ε

,
t

ε2m−1

)
	⇒ Uτ + (−1)m−1D2m−2

y (UUy) = (−1)m+1D2m
y U. (7.11)

It is important that the PDE (7.11) does not admit moving TWs as heteroclinic connections 1 �→ −1.
Indeed, for λ �= 0, integrating once, we obtain the ODE

− λf + (−1)m−1 1
2
(f 2)(2m−2) = (−1)m+1f (2m−1) + C, (7.12)

where C is a fixed constant. Clearly, for any m > 1, Eq. (7.12) cannot possess smooth solutions satisfying
f (±∞) = ∓1 unless λ = 0. This negative result suggests that the original PDE (7.1) does not admit moving
discontinuous solutions of the S±-type (but indeed there exist others of different shapes). Therefore, we
need to study approximation properties of these standing shocks with λ = 0 only.

7.1.5 (v) Monotone viscosity shock profile

The VSP corresponding to the proper (see below) shock wave S−(x) as a stationary solution of (7.10) has
the form

uε(x) = f−(y), with y = x/ε,

satisfying

f (2m) = 1
2
(f 2)(2m−1), f (±∞) = ∓1 	⇒ f ′ = 1

2
(f 2 − 1). (7.13)

Hence the unique VSP has the form (2.14). Indeed, as we have seen, the monotonicity of the VSP is an
essential positive feature of this higher-order model. Recall that these non-oscillatory stationary states of
(7.10) are quite special, and general solutions of this PDE must be highly oscillatory about ±1 for any
m ≥ 2, as the fundamental solution (A.1) guarantees.

7.2 Proper and improper shock waves

Similar to Sect. 5, we say that u(x, t) is a proper solution (we do not use “m-proper” for obvious reasons)
of the Cauchy problem (7.1) if there exists a sequence of initial data u0ε → u0 such that the solutions
of parabolic problems (7.10) satisfies (5.1) (at least in H−m). Let us study the evolution properties of the
shock waves S±(x).
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Proposition 7.1 (i)S−(x) is a proper solution, and (ii)S+(x) is not.

Proof (i) We have that convergence (5.8) with the VSP (2.14) holds a.e. (ii) The VSP f+ corresponding to
S+(x), i.e., a solution of the ODE satisfying f (±∞) = ±1, does not exist. Consider the equation (7.11) in
Q+ = R+ × R+ with conditions (5.4). Assuming that u0ε(x) → 1 as x → ∞ exponentially fast (then the
same holds for solutions uε(x, t) following from the integral equation), we apply to equation (7.11) operator
(−D2

y)
1−m naturally defined via integrating equation 2m − 2 times and integrate again over (y, ∞). Next,

multiplying by U − 1 in L2, we arrive at a Lyapunov function (cf. (5.12))

1
2

d
dτ

∫ ∞

0

[
(Dy)

−m(U − 1)
]2 = −1

3
−

∫ ∞

0
(Uy)

2 ≤ −1
3

. (7.14)

Integrating and rescaling this identity, similarly to the proof of Proposition 5.3, we have that uε cannot
converge to S+ as ε → 0. ��

7.3 For m = 2 the VSP is stable

Let us prove that for m = 2 the monotonicity of the VSP (2.14) guarantees the necessary condition (6.5)
of its stability. The linearization (6.1) yields the quadratically perturbed equation (6.2) with the linear
operator

N4Y = −Y(4) + (fY)′′′. (7.15)

Solving the eigenvalue problem (6.3) in a space of exponentially decaying functions (hence from L2) and
setting ψ = φ′′′, we arrive at the eigenvalue equation

−φ(4) + fφ′′′ = λφ, φ ∈ H4.

Multiplying this equation by φ̄′′ in L2 and the conjugate one by φ′′, after integration by parts, one obtains

(Re λ)

∫
|φ′|2 = −

∫
|φ′′′|2 + 1

2

∫
f ′|φ′′|2.

It follows that in suitable classes of even or odd functions, (6.5) holds. By the interpolation inequalities, this
implies that (7.15) is a sectorial operator in a weighted L2-space (see [11]) and the exponential stability of
the VSP follows.

This means that convergence (5.8) describes the generic formation of the shock layers in fourth-order
parabolic approximations of such shock-waves as weak solutions of the third-order equation (7.1).

7.4 On higher-order approximations: existence and stability of VSP

Equation (7.1) admits various parabolic approximations of different orders. For instance, consider its
(2m+2)th-order approximation

ut + (−1)m−1D2m−2
x (uux) = ε(−1)mD2m+2

x u, (7.16)

with rescaled variables

u(x, t) = U(y, τ), y = x/ε
1
3 , τ = t/ε

2m−1
3 ,

where U solves the parabolic PDE

Uτ + (−1)m+1D2m−2
y (UUy) = (−1)mD2m+2

y U. (7.17)
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Fig. 12 Varying the solutions of (7.20) with λ ≈ − 1
4 and ε ≈ 0.1

Then the VSP f−(y) for the shock wave S−(x) is the same as for extended Burgers’ equation (1.4) with
m = 2 and is uniquely determined by the ODE problem (2.13). The stability analysis is based on the results
from [15] and [11,12]. The characterization of shock-waves, Proposition 7.1, remains unchanged.

For instance, for m = 2 we have the sixth-order parabolic PDE

ut = (uux)xx + εuxxxxxx 	⇒ u(x, t) = U(y, τ), y = x/ε
1
3 , τ = t/ε, (7.18)

where U solves the rescaled ε-independent parabolic equation

Uτ = (UUy)yy + Uyyyyyy.

For the VSP with λ = 0, U(y) = f−(y), we have the ODE

(ff ′)′′ + f (6) = 0.

Hence, on integration, we obtain another ODE, which is more difficult than that in (7.13) and appeared
earlier (see (2.13) for m = 2)

f ′′′ = 1
2
(1 − f 2). (7.19)

The VSP solving (7.19) is given in Fig. 1(a) (the boldface line).

7.5 On moving proper shocks

The moving TWs u(x, t) = f (x − λt) with λ �= 0 of equation (7.18) satisfy the ODE with the Rankine–
Hugoniot condition (ε = 0)

− λf ′ = (ff ′)′′ + εf (6) 	⇒ λ = [(ff ′)′′]
[f ′] . (7.20)

The passage to the limit in (7.20) as ε → 0 to describe proper shocks is more difficult and falls out of the
scope of this paper. In Fig. 12 we present a few types of shocks, showing that these discontinuous solutions
can be approximated by ε-viscosity.

7.6 A quasilinear ε-approximation

Such an example is treated in Appendix F.
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8 Conclusions

We have discussed two main problems of higher-order viscosity approximations of nonlinear degenerate
odd-order partial differential equations (PDEs). As is known from classic theory, unlike parabolic or
elliptic (even-order) PDEs, such odd-order equations do not exhibit internal regularity and therefore may
admit essentially discontinuous solutions as the intrinsic property of the models. The principal question
is how to distinguish the so-called entropy shock waves from non-entropy shocks that are collapsed and
evolve to smoother rarefaction waves.

Nowadays, there exists a fully developed theory of first-order PDEs called the conservation laws with
the classic representative, such as the Euler equation originated from gas-dynamics

ut + uux = 0. (8.1)

Its discontinuous shocks have been well known for more than a century, and a complete theory was
created in the 1950s. One crucial conclusion is that the entropy solutions are those which can be obtained
in the limit ε → 0+ of smooth analytic solutions of the uniformly parabolic Burgers equation

ut + uux = εuxx. (8.2)

8.1 First problem

We discussed the possibility of higher-order approximations of entropy solutions via the analytic semigroup
generated by the extended Burgers equation

ut + uux = ε(−1)m+1D2m
x u with m ≥ 2. (8.3)

Despite the violation of order-preserving, comparison and discontinuity of total variation (characterized by
the variation deficiency; Sect. 4), our conclusion, whilst not being completely rigorously proved, is positive:
such an approximation makes sense. We have showed this using both the ODE (the G-admissibility of
shocks in Gel’fand’s sense; see Sect. 2) and sometimes the PDE approximations (Sect. 5). In particular, we
have proved that the non-entropy shocks S+(x) (actually evolving to rarefaction waves) cannot be obtained
via any parabolic approximations (Sect. 5).

8.2 Second problem

Higher-order parabolic approximations begin to play a key role for third-order nonlinear PDEs such as

ut = (uux)xx ≡ 1
2
(u2)xxx, (8.4)

which are associated with a number of important applications in nonlinear dispersion theory. From its fully
divergent version it follows that both shocks

S±(x) = ∓sign x

are indeed weak solutions since on both, S2±(x) ≡ 1, so that the PDE admits a standard multiplication
by a test function and integration by parts. There is no concept of entropy solutions for Eq. 8.4, so we
have used an approximation approach to reveal entropy (proper) and non-entropy shocks. The natural
approximation of (8.4) leads to the fourth-order parabolic PDE

ut − (uux)xx = −εuxxxx. (8.5)

Again, using various concepts of approximation, we have shown that S− = −sign x is the proper stationary
entropy shock, while S+ = sign x is not (Sect. 7). Numerically, we constructed smooth similarity solutions
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of (8.4) describing both the finite-time formation of the proper shock and the collapse of the non-proper
rarefaction wave.

The general results and conclusions of this paper make it possible to justify that approximation (vis-
cosity-like) techniques, which are well-known to be efficient in parabolic and Hamilton–Jacobi theory, can
also be applied to higher odd-order nonlinear PDEs. The mathematics of such entropy approximations
then becomes much more difficult than in the first-order theory and leads to a number of open problems
that have been indicated throughout the paper.

Acknowledgements The author thank K. Khanin for posing the question on fourth-order approximation of conservation
laws, and P. Plotnikov for useful discussions. The author thanks S. Manuilovich for drawing his attention to earlier papers on
gas dynamics, and J. Williams for helping to perform numerical calculations of non-monotone VSP’s. Research supported by
RTN network HPRN-CT-2002-00274.

Appendix A: Proof of Proposition 3.1

Proof Step 1: L∞-estimate on [0, T]. Consider the fundamental solution of the linear operator ∂/∂t +
ε(−1)mD2m

x ,

bε(x, t) = (εt)−
1

2m F
(
x/(εt)

1
2m

)
, (A.1)

with the exponentially decaying rescaled kernel F; see [34] and applications to global existence in [52].
Writing down uux = 1

2 (u
2)x in the equivalent integral equation

u(t) = bε(t) ∗ u0ε − 1
2

∫ t

0
bε(t − s) ∗ (u2)x(s)ds, (A.2)

using the Hölder inequality in the first term and integrating by parts in the last, one obtains

|u(t)| ≤ sup |u0ε| ‖F‖1 + 1
2

∫ t

0
sup

x
|bεx(t − s)| ‖u(s)‖2

2 ds ≤ C
(
1 + T

m−1
m

)
,

where we have used the estimate

|bεx(x, t)| = (εt)−
1
m

∣∣F ′(x/(εt)
1

2m
)∣∣ ≤ Ct−

1
m .

Step 2: uniform L∞-estimate. This leads to a more delicate scaling analysis, and it seems that such an esti-
mate cannot be obtained from the integral equation (A.2) just by embedding and interpolation inequalities
or weighted Gronwall-type techniques. We use a modification of the rescaling technique in [61, Prop. 2.1],
assuming for contradiction that there exist sequences {tk} → ∞, {xk} ⊂ R, and {Ck} → +∞ such that

sup
RN×[0,tk]

u(x, t) = u(xk, tk) = Ck. (A.3)

Then we perform the scaling

uk(x, t) = u(xk + x, tk + t) = Ckvk(y, s), x = aky, t = a2m
k s. (A.4)

where {ak} is such that the L2 norm is preserved, i.e.,

‖uk‖2 = ‖vk‖2 	⇒ ak = C−2
k . (A.5)

Substituting (A.4) in Eq. 1.4 yields that vk satisfies

(vk)s = −ε(−Dy)
mvk − δkvk(vk)y in R × R+, where (A.6)

δk = a2m−1
k Ck = C3−4m

k → 0 as k → ∞. (A.7)
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Fixing s0 large enough and setting wk(s) = vk(s − s0), we have that

|wk(s)| ≤ 1 on (0, s0), ‖wk‖2 ≤ C, (A.8)

are bounded classical solutions of the uniformly parabolic equations (A.6), so that, by parabolic regularity
theory (see e.g., [34,35]), we may assume that wk(s) → w(s) as k → ∞ uniformly on compact subsets,
where w solves

ws = −ε(−Dy)
mw for s > 0, w(0) = w0, (A.9)

with ‖w0‖∞ ≤ 1 and ‖w0‖2 ≤ C. By the Hölder inequality it follows that

‖w(s0)‖∞ ≤ (εs0)
− 1

4m ‖F‖2‖w0‖2 � 1,

if s0 is large enough. Hence, the same holds for ‖v̄k(s0)‖∞ for k � 1 and there arises a contradiction with
the assumption ‖wk(s0)‖∞ = 1. ��

Appendix B: Proof of proposition 4.2

Proof (i) It follows from the convolution u(t) = bε(t) ∗ u0 (see (A.1)) that

|u(t)|TV =
∫

|ux(x, t)| dx ≤ (εt)−
1

2m

∫ ∫ ∣∣F
(
z/(εt)

1
2m

)∣∣ |u′
0(x − z)| dx dz ≤ D∗|u0|TV .

(ii) To show that the estimate is sharp, we take the step-like initial data

u0(x) =
{

1 for x < 0;
0 for x ≥ 0,

so that |u0|TV = 1. Then the solution

u(x, t) =
∫ ∞

x/t
1

2m
F(z)dz

satisfies (4.5) of the form

|u(t)|TV = D∗ ≡ D∗|u0|TV for all t > 0,

i.e., the equality sign is achieved. ��

Appendix C: Interpolation inequalities do not guarantee the sign

Consider the first integral given in (4.18) with χ ≡ 1,

P2 ≡ −
∫

E′′(uxx)
2 dx + 1

3

∫
E′′′′(ux)

4 dx ≡ −P21 + 1
3

P22, (C.1)

assuming that sufficiently smooth solutions u = uε(x, t) have fast (exponential) decay as x → ∞. Let us
estimate the second positive term via a simple integration by parts

P22 =
∫

E′′′′(ux)
3ux = −

∫
uE(5)(ux)

4 − 3
∫

uE′′′′(ux)
2uxx,

and using the Hölder inequality (recall that E(u) is convex)
∫
(E′′′′ + uE(5))(ux)

4 ≤ 3
∫
(
√

E′′|uxx|)
[|uE′′′′|(ux)

2/
√

E′′ ] (C.2)

≤ 3
[ ∫

E′′(uxx)
2] 1

2
[ ∫

(uE′′′′)2(ux)
4/E′′] 1

2 .
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In order to derive a suitable comparison of the two terms on the right-hand side of (C.1), we first impose
the following conditions on functions E′(u):

E′′′′(u)+ uE(5)(u) ≥ C1E′′′′(u),
[
uE′′′′(u)

]2
/E′′(u) ≤ C2E′′′′(u), u ∈ R, (C.3)

where C1 and C2 are some positive constants. Then (C.2) implies
∫

E′′′′(ux)
4 ≤ C3

∫
E′′(uxx)

2, with C3 = 9C2

C2
1

, (C.4)

and hence by (C.1)

P2 ≤
(

3C2

C2
1

− 1

) ∫
E′′(uxx)

2 ≤ 0 if C2
1 ≥ 3C2. (C.5)

The second condition in (C.3) assumes that E′′′′(u) ≥ 0 in R, which is not true for E(u) ≈ sign u. Replacing
E′′′′ by |E′′′′| on the right-hand sides of (C.3) (or other optimizations) does not extend the resulting estimate
like (C.5) to the necessary sufficiently wide class of functions E(u). For the typical power functions

E′(u) = |u|2ku, with a k > 1, (C.6)

(C.1) reads

P2 = −(2k + 1)
∫

|u|2k(uxx)
2 + 2

3
(2k − 1)k(2k + 1)

∫
|u|2k−2(ux)

4. (C.7)

Integrating by parts and using the Holder inequality as in (C.2) yields
∫

|u|2k−2(ux)
4 ≤ 9

(2k − 1)2

∫
|u|2k(uxx)

2,

and we arrive at the following estimate (cf. (C.5)):

P2 ≤ C∗
∫

|u|2k(uxx)
2, (C.8)

where C∗ = (1+4k)(2k+1)
2k−1 > 0 for all k > 1

2 . Thus, we cannot get the necessary sign P2 ≤ 0 on particular
functions (C.6) for large k. In fact, this shows that the Nash–Moser technique for second-order parabolic
equations (see [62, p. 344]) does not apply to fourth-order operators with m = 2 and to other higher-
order ones. Indeed, the iterative nature of the technique with the eventual limit k → ∞ assumes certain
order-preserving properties via the Maximum Principle (available for m = 1 only), so that the inequality
C∗ ≤ 0 for all large k cannot be achieved in principle via optimization of constants in the interpolation and
embedding inequalities.

Appendix D: Asymptotic stability of the rarefaction profile

We now consider the second asymptotic problem (not of lesser importance) of the stability of the rar-
efaction wave occurring for initial data U0(y) = S+(y) in the Cauchy problem (5.6). It is convenient to
introduce new self-similar rescaled variables

U = (1 + τ)−
2m−1

2m θ , ξ = y/(1 + τ)
1

2m , s = log(1 + τ) : R+ → R+. (D.1)

Then the rescaled solution θ = θ(ξ , s) solves the autonomous equation

θs = (−1)m+1D2m
ξ θ − θθξ + µθξ ξ + (2m − 1)µθ , µ = 1

2m
, (D.2)
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with the same initial data. Equation D.2 has the explicit stationary solution

θ̄ (ξ ) = ξ in R. (D.3)

Obviously, (D.1) shows that it is precisely the solution (5.7), so that we refer to (D.3) as the rarefaction
profile (RP) defined in R. We prove that the RP is asymptotically stable. The linearization θ = ξ +Y yields
the perturbed equation

Ys = AY − YYξ with A = (−1)m+1D2m
ξ − (2m − 1)µ ξ

d
dξ

− µ I. (D.4)

Setting ξ = cη with c2m = 1
2m−1 gives

A = (2m − 1)B∗ − 1
2m

I.

The corresponding linear elliptic operator

B∗ = −(−�η)m − µη · ∇η in RN

is known to have a discrete spectrum σ(B∗) = {− l
2m , l = 0, 1, 2, . . .} [52]. Note that the second-order case

m = 1 is classic and exceptional, where

B∗ ≡ 1
ρ∗ ∇ · (ρ∗∇)

with the weight ρ∗(y) = e−|y|2/4, which is self-adjoint in L2
ρ∗(RN) with the domain D(B∗) = H2

ρ∗(RN),
and a discrete spectrum. The eigenfunctions are Hermite polynomials that form an orthonormal basis in
L2
ρ∗(RN), and classical Hilbert–Schmidt theory applies [63].
We describe the spectral properties of the linearized operator in (D.4) which is not self-adjoint for

m > 1. We consider A given in (D.4) in the weighted space L2
ρ∗(R+) of odd functions with the exponen-

tially decaying weight function

ρ∗(y) = e−a|y|β > 0, β = 2m
2m − 1

, (D.5)

where a > 0 is a sufficiently small constant. The following holds [52].

Lemma D.1 A : H2m
ρ∗ (R+) → L2

ρ∗(R+) is a bounded linear operator with the discrete spectrum

σ(A) =
{
λl = −1 + (2m − 1)l

2m
, l = 1, 3, 5, . . .

}
, (D.6)

and the eigenfunction set {ψl(ξ)} (lth-order polynomials) is complete in L2
ρ∗(R+).

As we have mentioned, for m = 1, these are well-known properties of the separable Hermite poly-
nomials generated by a self-adjoint Sturm–Liouville problem [63]. In view of the principle of linearized
stability [59, Ch. 9], we have that the RP is asymptotically stable in L2

ρ∗(R+) and moreover, since the real
spectrum is uniformly bounded from the imaginary axis, we have exponential convergence of the order
O(e−s) = O(τ−1) as τ → ∞. Since the weight (D.5) is exponentially decaying at infinity, the stability
conclusion is true for a wide class of initial data.

Thus, the rarefaction solution (5.7) exhibits exponential asymptotic stability for parabolic approxima-
tions of any order. This explains once more why non-entropy shocks of type S+ cannot occur in the
evolution, cf. Proposition 5.3. For the Cauchy problem (5.6) with bounded initial data U0ε ∼ S+, the stable
RP (D.3) also plays a role, but the convergence as ε → 0 is again a hard asymptotic problem, which includes
a delicate matching-type analysis.
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Note that the linear operator B∗ occurs in the study of blow-up solutions of a completely different
reaction–diffusion equation

ut = −(−�)mu + |u|p in RN × R (p > 1);

see [64]. The analysis of its global solutions in the supercritical Fujita range p > 1 + 2m
N [52] is based on

spectral properties of the adjoint operator

B = −(−�η)m + 1
2m

η · ∇η + N
2m

I.

Appendix E: On a formal connection for m = 2 by the averaging method

A simple formal, but rather practical and sharp, approach to matching is as follows, where we use the idea
of Elenin’s averaging method [65]; for more details see [66, p. 201]. For instance, comparing profiles for
m = 2 in Fig. 8b, we have that

f−(y) ≈ Aθ
(y

a

)
, with A = 43

39
= 1.103 . . . , a = 8

10
= 0.25. (E.1)

Then the global evolution of U(y, τ) can be expressed as follows:

U(y, τ) ≈ ψ(τ)θ(ζ ), ζ = x
ϕ(τ)

, where

ψ(τ) → 1, ϕ(τ) ∼ τ
1
4 as τ → 0 (Region I);

ψ(τ) → A, ϕ(τ) → a as τ → +∞ (Region III).

(E.2)

To derive a dynamical system describing the evolution of {ϕ(τ),ψ(τ)}, we take two identities obtained
from (5.6), m = 2, via multiplying by Uyy and Uyyyy in L2(R),
⎧
⎪⎪⎨

⎪⎪⎩

−1
2

d
dτ

∫
(Uy)

2 − 1
2

∫
(Uy)

3 =
∫
(Uyyy)

2,

1
2

d
dτ

∫
(Uyy)

2 + 1
2

∫
UUyUyyyy = −

∫
(Uyyyy)

2.
(E.3)

Substituting in (E.3), we have that the representation of U(y, τ) from (E.2) yields the following ODE
system for {ϕ,ψ}:

− a1

2

(ψ2

ϕ

)′ + b1

2
ψ3

ϕ2 = c1
ψ2

ϕ5
,

a2

2

(ψ2

ϕ3

)′ + b2
ψ3

ϕ4 = −c2
ψ2

ϕ7 , (E.4)

where the positive constant coefficients are given by

a1 =
∫
(θ ′)2, b1 = −

∫
(θ ′)3, c1 =

∫
(θ ′′′)2, (E.5)

a2 =
∫
(θ ′′)2, b2 =

∫
θθ ′θ(4) = 1

4

∫
ζθ(θ ′)2, c2 =

∫
(θ(4))2. (E.6)

It is easy to reduce (E.4) to a standard dynamical system

ϕ′ = −µ1ψ + ν1
1
ϕ3 , ψ ′ = µ2

ψ2

ϕ
− ν2

ψ

ϕ4 , (E.7)

with the following positive parameters:

µ1 = 1
2

(
b1

a1
− 2b2

a2

)
, ν1 = c2

a2
− c1

a1
, µ2 = 1

4

(
3b1

a1
+ 2b2

a2

)
, ν2 = 1

2

(
3c1

a1
− c2

a2

)
. (E.8)
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Then (E.7) has the necessary equilibrium point (a, A) given in (E.1) provided that

ν1

µ1
= ν2

µ2
⇐⇒ 2b1c2

a1a2
= c1

a1

(
3b1

a1
− 2b2

a2

)
> 0. (E.9)

In this case, (E.7) gives an approximate description of the evolution in the transitional Region II. We claim
that the dynamical system (E.4) can be put in a rigorous approximate framework. The same construction
applies to any m ≥ 2.

Appendix F: On a quasilinear approximation

As a final example, we show that even quasilinear degenerate approximations of S− can preserve the main
features of parabolic regularization. Consider the following approximation of (7.1) via the p-Laplacian
operator as in (5.10):

ut + (−1)m−1D2m−2
x (uux) = ε(−1)m+1Dm

x (|Dm
x u|p−2Dm

x ), p > 1, (F.1)

where

uε(x, t) = Uε(y, τ), y = x/εα , τ = t/ε(2m−1)α , and α = 1
1 + m(p − 2)

.

Let m = 2. Then the entropy VSP f− satisfies the ODE

ff ′ = |f ′′|p−2f ′′, with f (±∞) = ∓1

(one can see that the non-entropy VSP f+ does not exist). For y > 0, we have f < 0, f ′ ≤ 0 and f ′′ ≥ 0, and
setting −f ′ = R ≥ 0 yields

f ′′ ≡ RRf = (−f )
1

p−1 R
1

p−1 .

If p ∈ (1, 3
2 ], integrating once yields that a solution satisfying R(−1) = 0 does not exist, i.e., approximation

(F.1) in not admissible. For p > 3
2 , from the equation

R = −f ′ = a0
[
1 − (−f )

p
p−1

] p−1
2p−3 , a0 =

(
2p − 3

p

) p−1
2p−3

, (F.2)

one obtains the unique VSP f = f−(y) from the quadrature
∫ −f

0

(
1 − z

p
p−1

)− p−1
2p−3 dz = a0y, y > 0. (F.3)

Hence, for p ∈ ( 3
2 , 2], f−(y) is strictly monotone decreasing in R and is a C∞ function as in the linear case

p = 2. For p > 2 it has finite regularity at the interface, where f−(y0) = −1 at

y0 = p − 1
a0p

B
(

p − 1
2p − 3

,
p − 1

p

)
,

B being Euler’s Beta function. Though for p > 2 the VSP is strictly decreasing on I0 = (−y0, y0); the
stability analysis and other related questions on such approximations become more involved. Indeed,
linearization (6.1) leads to a singular ODE operator N2m on I0 in Eq. 6.2. The functional setting becomes
more complicated (the weight function ρ is expected to be unbounded at the singular end-points y = ±y0),
and a delicate matching procedure extending the stability analysis beyond interval I0 should be performed.
Such quasilinear approximations are not well-posed (e.g., uniqueness of solutions is not well-understood
in general), though keep some typical features of semilinear parabolic regularizations.
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